Part Number Hot Search : 
1N4735 2SK3490 M74HC05 MA81200H AM631031 CL7P7HL P0502NL ID226020
Product Description
Full Text Search
 

To Download ACNV4506 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ACNV4506 intelligent power module and gate drive interface optocouplers data sheet caution: it is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by esd. description thefACNV4506fdevicefcontainsfafgaaspfledfopticallyf coupledftofanfintegratedfhighfgainfphotofdetector.f minimizedfpropagationfdelayfdiferencefbetweenf devicesfmakesfthesefoptocouplersfexcellentfsolutionsfforf improvingfinverterfefciencyfthroughfreducedfswitchingf deadftime.fspecifcationsfandfperformancefplotsfarefgivenf forftypicalfipmfapplications. functional diagram features ? performancefspecifedfforfcommonfipmfapplicationsf overfindustrialftemperaturefrange. ? shortfmaximumfpropagationfdelays ? minimizedfpulsefwidthfdistortionf(pwd) ? veryfhighfcommonfmodefrejectionf(cmr) ? highfctr. ? availablefinfwidebodyfdip10fandfgulwingfpackagesf withf13.0fmmfcreepagefandfclearance. ? safetyfapprovalf(pending): Cf ulfrecognizedfwithf7500fv rms fforf1fminutefperf ul1577. Cf csafapproved. Cf iec/en/dinfenf60747-5-2fapprovedfwithfv iorm f=f 2262v peak . specifcations ? widefoperatingftemperaturefrange:fC40cftof105c. ? typicalfpropagationfdelayft phl f=f200fns,ft plh f=f350fns ? typicalfpulsefwidthfdistortionf(pwd)f=f150fns. ? 30fkv/ sfminimumfcommonfmodefrejectionf(cmr)fatf v cm f=f1500fv. ? ctrf=f90%(typ)fatfi f f=f10ma applications ? ipmfisolation ? isolatedfigbt/mosfetfgatefdrive ? acfandfbrushlessfdcfmotorfdrives ? industrialfinverters note:f af0.1f ffbypassfcapacitorfmustfbefconnectedfbetweenfpinsf7fandf10. truth table led v o on low off high anode n.c. cathode v l v o ground 9 2 8 3 7 4 shield 5 1 6 10 20k? v cc n.c. n.c. n.c.
2 ordering information ACNV4506fisfpendingfulfrecognitionfwithf7500vrmsfforf1fminutefperful1577. part number option package surface mount gull wing tape &reel ul 7500vrms/ 1 minute rating iec/en/din en 60747-5-2 quantity rohs compliant ACNV4506 f -000e 500fmil f f f x x 35fperftube -300e dip-10 f x x f x x 35fperftube -500e x x x x x 500fperfreel toforder,fchoosefafpartfnumberffromfthefpartfnumberfcolumnfandfcombinefwithfthefdesiredfoptionffromfthefoptionf columnftofformfanforderfentry. examplef1: ACNV4506-500eftoforderfproductfoff500milfdip-10fwidebodyfwithfgullfwingfsurfacefmountfpackagefinftapefandfreelf packagingfwithfbothfulf7500vrms/1minfandfiec/en/dinfen60747-5-2fsafetyfapprovalfinfrohsfcompliant.fff optionfdatasheetsfarefavailable.ffcontactfyourfavagofsalesfrepresentativeforfauthorizedfdistributorfforfinformation.
3 package outline drawings ACNV4506 widebody 500mils dip10 package, 13.0 mm clearance ACNV4506 widebody 500mils gulwing tape & reel package, 13.0 mm clearance dimensions in inches [millimeters] [13.69 0.15] 0.539 0.006 [11.01 0.15] 0.433 0.006 [13.01 0.15] 0.512 0.006 [11.01 0.15] 0.433 0.006 [1.998] 0.08 [5.25] 0.21 [13.06] 0.514 +0.08 -0.05 +0.003 -0.002 [0.25 ] 0.010 5 typ [1.30] 0.05 typ [5.25] 0.207 [1.78 0.15] 0.070 0.006 [2.54] 0.10 typ [0.51] 0.020 min [0.48 0.08] 0.019 0.003 [3.10] 0.122 [3.90] 0.154 dimension in inches [millimeter] land pattern recommendation [13.71 0.15] 0.540 0.006 [11.01 0.15] 0.433 0.006 [16.35 0.15] 0.644 0.006 [1.78 0.15] 0.070 0.006 [0.75 0.15] 0.030 0.006 [1.00 0.15] 0.039 0.006 [14.90 0.15] 0.587 0.006 [13.01 0.15] 0.512 0.006 [2.29 0.15] 0.090 0.006 [1.30 0.15] 0.051 0.006 [2.29 0.15] 0.090 0.006 [1.30] 0.051 typ max [5.25] 0.207 5 nom +0.076 -0.051 +0.003 -0.002 [0.254 ] 0.010
4 table 1. iec/en/din en 60747-5-2 insulation characteristics* (ACNV4506) description symbol characteristic unit climaticfclassifcationf(iecf68fpartfi) 55/105/21 maximumfworkingfinsulationfvoltage v iorm 2262 v peak inputftofoutputftestfvoltage,fmethodfb* v iorm fxf1.875=v pr ,f100%fproductionftestfwithft m =1fsec,fpartialfdischargef10 9 ? *f f referftofthefoptocouplerfsectionfoffthefisolationfandfcontrolfcomponentsfdesignersfcatalog,funderfproductfsafetyfregulationsfsection,f f (iec/en/dinfenf60747-5-2)fforfafdetailedfdescriptionfoffmethodfafandfmethodfbfpartialfdischargeftestfprofles. regulatory information thefACNV4506fisfpendingfapprovalffromftheffollowingforganizations: iec iec/en/dinfenf60747-5-2:2009 ul approvalfunderfulf1577,fcomponentfrecognitionfprogramf upftofv iso f=f7500fv rms .ffilefe55361. csa approvalfunderfcsafcomponentfacceptancefnoticef#5,f filefcaf88324. solder refow profle recommendedfrefowfconditionfasfperfjedecfstandard,fj-std-020f(latestfrevision).fnon-halideffluxfshouldfbefused.
5 table 2. insulation and safety related specifcations parameter symbol ACNV4506 units conditions minimumfexternalfairfgapf (externalfclearance) l(101) 13.0 mm measuredffromfinputfterminalsftofoutputfterminals,f f shortestfdistancefthroughfair. minimumfexternal trackingf(externalfcreepage) l(102) 13.0 mm measuredffromfinputfterminalsftofoutputfterminals,f f shortestfdistancefpathfalongfbody. minimumfinternalfplasticfgap (internalfclearance) 2 mm throughfinsulationfdistancefconductorftofconductor,f usuallyfthefstraightflinefdistancefthicknessfbetweenfthef emitterfandfdetector. minimumfinternalftrackingf (internalfcreepage) na mm measuredffromfinputfterminalsftofoutputfterminals,f f alongfinternalfcavity. trackingfresistance (comparativeftrackingfindex) cti >175 v dinfiecf112/vdef0303fpartf1 isolationfgroup iiia materialfgroupf(dinfvdef0110,f1/89,ftablef1) f table 3. absolute maximum ratings parameter symbol min. max. units note storageftemperature t storage -55 125 c operatingftemperature t a -40 105 c averagefinputfcurrent i f(avg) 25 ma 1 peakfinputfcurrent (50%fdutyfcycle,f<1fmsfpulsefwidth) i f(peak) 50 ma 2 peakftransientfinputfcurrent (<1f sfpulsefwidth,f300fpps) i f(tran) 1.0 a reversefinputfvoltagef(pinf3-2) v r 5 v averagefoutputfcurrentf(pinf8) i o(avg) 15 ma outputfvoltagef(pinf8-7) v o -0.5 30 supplyfvoltagef(pinf10-7) v cc -0.5 30 outputfpowerfdissipation p o 100 mw 3 totalfpowerfdissipation p t 145 mw 4 infraredfandfvaporfphasefrefowftemperature seefrefowfthermalfprofle. table 4. recommended operating conditions parameter symbol min. max. units note powerfsupplyfvoltage v cc 4.5 30 v outputfvoltage v o 0 30 v inputfcurrentf(on) i f(on) 10 20 ma inputfvoltagef(off) v f(of ) -5 0.8 v operatingftemperature t a -40 105 c
6 table 5. electrical specifcations overfrecommendedfoperatingfconditionsfunlessfotherwisefspecifed: f t a f=f-40cftof+105c,fv cc f=f+4.5fvftof30fv,fi f(on) f=f10fmaftof20fma,fv f(of ) f=f-5fvftof0.8fv parameter symbol min. typ.* max. units test conditions fig. note currentftransferfratio ctr 44 90 % i f f=f10fma,fv o f=f0.6fv 5 lowflevelfoutputfcurrent i ol 4.4 9.0 ma i f f=f10fma,fv o f=f0.6fv 1,f2 lowflevelfoutputfvoltage v ol 0.3 0.6 v i o f=f2.4fma inputfthresholdfcurrent i th 1.0 5.0 ma v o f=f0.8fv,fi o f=f0.75fma 1 9 highflevelfoutputfcurrent i oh 5 50 a v f f=f0.8fv 3 highflevelfsupplyfcurrent i cch 0.6 1.3 ma v f f=f0.8fv,fv o f=fopen 9 lowflevelfsupplyfcurrent i ccl 0.6 1.3 ma i f f=f10fma,fv o f=fopen 9 inputfforwardfvoltage v f 1.5 1.85 v i f f=f10fma 4 temperaturefcoefcientfoff forwardfvoltage v f / t a -1.6 mv/c i f f=f10fma inputfreversefbreakdownf voltage bv r 5 v i r f=f10f a inputfcapacitance c in 60 pf ff=f1fmhz,fv f f=f0fv *f allftypicalfvaluesfatf25c,fvccf=f15fv. table 6. switching specifcations (rl = 20 k ? ) overfrecommendedfoperatingfconditionsfunlessfotherwisefspecifed.f f t a f=f-40cftof+105c,fv cc f=f+4.5fvftof30fv,fi f(on) f=f10fmaftof20fma,fv f(of ) f=f-5fvftof0.8fv parameter symbol min. typ.* max. units test conditions fig. note propagationfdelayftimeftof lowfoutputflevel t phl 95 200 400 ns c l f=f100fpf i f(on) f=f10fma, v f(of ) f=f0.8fv, v cc f=f15.0fv, v thlh f=f2.0fv, v thhl f=f1.5fv 5,f7,f 9-11 8,f9 110 ns c l f=f10fpf propagationfdelayftimeftof highfoutputflevel t plh 250 350 550 ns c l f=f100fpf 200 ns c l f=f10fpf pulsefwidthfdistortion pwd 150 450 ns c l f=f100fpf 13 propagationfdelayfdiferencef betweenfanyf2fparts t plh -t phl -150 150 450 ns 10 outputfhighflevelfcommonf modeftransientfimmunity |cm h | 30 35 kv/ s i f f=f0fma,f v o f>f3.0fv v cc f=f15.0fv, c l f=f100fpf, v cm f=f1500fv p-p , t a f=f25c 6 11 outputflowflevelfcommonf modeftransientfimmunity |cm l | 30 35 kv/ s i f f=f10fma,f v o f 7 table 7. switching specifcations (rl = internal pull-up) overfrecommendedfoperatingfconditionsfunlessfotherwisefspecifed.f f t a f=f-40cftof+105c,fv cc f=f+4.5fvftof30fv,fi f(on) f=f10fmaftof20fma,fv f(of ) f=f-5fvftof0.8fv parameter symbol min. typ.* max. units test conditions fig. note propagationfdelayftimeftof lowfoutputflevel t phl 95 200 400 ns i f(on) f=f10fma, v f(of ) f=f0.8fv, v cc f=f15.0fv, v thlh f=f2.0fv, v thhl f=f1.5fv 8 8,f9 propagationfdelayftimeftof highfoutputflevel t plh 200 365 550 ns pulsefwidthfdistortion pwd 165 500 ns 13 propagationfdelayfdiferencef betweenfanyf2fparts t plh -t phl -150 165 500 ns 10 outputfhighflevelfcommonf modeftransientfimmunity |cm h | 30 35 kv/ s i f f=f0fma,f v o f>f3.0fv v cc f=f15.0fv, c l f=f100fpf, v cm f=f1500fv p-p , t a f=f25c 6 11 outputflowflevelfcommonf modeftransientfimmunity |cm l | 30 35 kv/ s i f f=f10fma,f v o ff3.0fv). 12.f commonfmodeftransientfimmunityfinfaflogicflowflevelfisfthefmaximumftolerablefdv cm /dtfoffthefcommonfmodefpulse,fv cm ,ftofassurefthatfthef outputfwillfremainfinfaflogicflowfstatef(i.e.,fv o f 8 i f v o v thhl t phl t plh t f t r 90% 10% 90% 10% v thlh t a ? temperature ? c t a = 25c 0.1f + - + - v cc = 15 c l * v out * total load capacitance 9 2 8 3 7 4 shield 5 1 6 10 20k? i f(on) = 10 ma 9 2 8 3 7 4 5 1 6 10 i f v f + ? 0 0.5 1 1.5 2 2.5 3 3.5 4 -40 -20 0 20 40 60 80 100 i oh - high level output current - a 30 v 4.5 v 0.001 0.01 0.1 1 10 100 1 1.2 1.4 1.6 1.8 2 v f - input forward voltage - v i f - input forward current-ma v f = 0.8 v v cc = v o = 4.5 v or 30 v v cm ?t ov v o v o switch at a: i f = 0 ma switch at b: i f = 10 ma v cc v ol v cm ?t v t = v ff + - b 0.1f i f + - v 100 pf * v out * 100 pf total capacitance a v cm = 1500v + - 9 2 8 3 7 4 shield 5 1 6 10 20k? v cc = 15 9 2 8 3 7 4 5 1 6 10 figure 5. propagation delay test circuit figure 3. high level output current vs. temperature figure 4. input current vs. forward voltage figure 1. typical transfer characteristics figure 2. normalized output current vs. temperature t a ? temperature ? c 0 2 4 6 8 10 0 5 10 15 20 i f - forward led current - ma i o - output current - ma 25c -40c 105c v o = 0.6 v 0.9 0.92 0.94 0.96 0.98 1 1.02 -40 -20 0 20 40 60 80 100 normalized output current i f = 10 ma v o = 0.6 v
9 100 200 300 400 500 -40 -20 0 20 40 60 80 100 t p - propagation delay - ns 100 200 300 400 500 -40 -20 0 20 40 60 80 100 t a - temperature - c t a - temperature - c t p - propagation delay - ns t plh t phl 0 200 400 600 800 1000 0 10 20 30 40 50 r l ? load resistance ? k? t p - propagation delay - ns t phl t plh 0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500 c l - load capacitance - pf t p - propagation delay - ns t plh t phl i f = 10 ma v cc = 15 v c l = 100 pf r l = 20 k? (external) i f = 10 ma v cc = 15 v c l = 100 pf r l = 20 k? (internal) i f = 10 ma v cc = 15 v c l = 100 pf t a = 25c i f = 10 ma v cc = 15 v r l = 20 k? t a = 25c t plh t phl figure 9. propagation delay vs. load resistance figure 10. propagation delay vs. load capacitance figure 7. propagation delay with external 20 k ? rl vs. temperature figure 8. propagation delay with internal 20 k ? rl vs. temperature figure 6. cmr test circuit and waveforms i f v o v thhl t phl t plh t f t r 90% 10% 90% 10% v thlh t a ? temperature ? c t a = 25c 0.1f + - + - v cc = 15 c l * v out * total load capacitance 9 2 8 3 7 4 shield 5 1 6 10 20k? i f(on) = 10 ma 9 2 8 3 7 4 5 1 6 10 i f v f + ? 0 0.5 1 1.5 2 2.5 3 3.5 4 -40 -20 0 20 40 60 80 100 i oh - high level output current - a 30 v 4.5 v 0.001 0.01 0.1 1 10 100 1 1.2 1.4 1.6 1.8 2 v f - input forward voltage - v i f - input forward current-ma v f = 0.8 v v cc = v o = 4.5 v or 30 v v cm ?t ov v o v o switch at a: i f = 0 ma switch at b: i f = 10 ma v cc v ol v cm ?t v t = v ff + - b 0.1f i f + - v 100 pf * v out * 100 pf total capacitance a v cm = 1500v + - 9 2 8 3 7 4 shield 5 1 6 10 20k? v cc = 15 9 2 8 3 7 4 5 1 6 10
10 0 500 1000 1500 2000 2500 0 5 10 15 20 25 30 v cc - supply voltage - v t p - propagation delay - ns t plh t phl 100 200 300 400 500 0 5 10 15 20 i f - forward led current - ma t p - propagation delay - ns t plh t phl i f = 10 ma c l = 100 pf r l = 20 k? t a = 25c v cc = 15 v c l = 100 pf r l = 20 k? t a = 25c 0 100 200 300 400 500 600 700 800 900 1000 1100 0 10 20 30 40 50 60 70 80 90 100 110 120 i s (ma) output power - p s , input current - i s t s - case temperature - c p s (mw) figure 11. propagation delay vs. supply voltage figure 12. propagation delay vs. input current figure 13. dependence of safety limiting values on temperatures (thermal derating curves)
11 applications information led drive circuit considerations for ultra high cmr performance withoutfafdetectorfshield,fthefdominantfcausefoffop - tocouplerfcmrffailurefisfcapacitivefcouplingffromfthef inputfsidefoffthefoptocoupler,fthroughfthefpackage,ftof thefdetectorficfasfshownfinffiguref15.fthefACNV4506f improvefcmrfperformancefbyfusingfafdetectorficfwithf anfopticallyftransparentffaradayfshield,fwhichfdivertsfthef capacitivelyfcoupledfcurrentfawayffromfthefsensitiveficf circuitry.fhowever,fthisfshieldfdoesfnotfeliminatefthefca - pacitivefcouplingfbetweenfthefledfandfthefoptocouplerf outputfpinfandfoutputfgroundfasfshownfinffiguref16.f thisfcapacitivefcouplingfcausesfperturbationsfinfthefledf currentfduringfcommonfmodeftransientsfandfbecomesf thefmajorfsourcefoffcmrffailuresfforfafshieldedfoptocou - pler.fthefmainfdesignfobjectivefoffafhighfcmrfledfdrivef circuitfbecomesfkeepingfthefledfinfthefproperfstatef f (onforfof )fduringfcommonfmodeftransients.fforfexample,f thefrecommendedfapplicationfcircuitf(figuref14),fcanf achievef30fkv/ sfcmrfwhilefminimizingfcomponentfcom - plexity.fnotefthatfafcmosfgatefisfrecommendedfinffiguref 14ftofkeepfthefledfoffwhenfthefgatefisfinfthefhighfstate. anotherfcausefoffcmrffailurefforfafshieldedfoptocouplerf isfdirectfcouplingftofthefoptocouplerfoutputfpinsfthroughf c ledo1 finffiguref16.fmanyffactorsfinfuencefthefefectfandf magnitudefoffthefdirectfcouplingfincluding:fthefpositionf offthefledfcurrentfsettingfresistorfandfthefvaluefoffthef capacitorfatfthefoptocouplerfoutputf(c l ). cmr with the led on (cmr l ) afhighfcmrfledfdrivefcircuitfmustfkeepfthefledfonfduringf commonfmodeftransients.fthisfisfachievedfbyfoverdriv - ingfthefledfcurrentfbeyondfthefinputfthresholdfsofthatfitf isfnotfpulledfbelowfthefthresholdfduringfaftransient.fthef recommendedfminimumfledfcurrentfoff10fmafprovidesf adequatefmarginfoverfthefmaximumfi th foff5.0fmaf(seef figuref1)ftofachievef30fkv/ sfcmr. thefplacementfoffthefledfcurrentfsettingfresistorfefectsf thefabilityfoffthefdrivefcircuitftofkeepfthefledfonfduringf transientsfandfinteractsfwithfthefdirectfcouplingftofthef f optocouplerfoutput.fforfexample,fthefledfresistorfinf figuref17fisfconnectedftofthefanode.ffiguref18fshowsfthef acfequivalentfcircuitfforffiguref17fduringfcommonfmodef transients.fduringfaf+dv cm /dtfinffiguref18,fthefcurrentf availablefatfthefledfanodef(i total )fisflimitedfbyfthefseriesf resistor.fthefledfcurrentf(i f )fisfreducedffromfitsfdcfvaluef byfanfamountfequalftofthefcurrentfthatffowsfthroughf c ledp fandfc ledo1 .fthefsituationfisfmadefworsefbecausef thefcurrentfthroughfc ledo1 fhasfthefefectfofftryingftofpullf thefoutputfhighf(towardfafcmrffailure)fatfthefsameftimef thefledfcurrentfisfbeingfreduced.fforfthisfreason,fthefrec - ommendedfledfdrivefcircuitf(figuref14)fplacesfthefcurrentf settingfresistorfinfseriesfwithfthefledfcathode.ffiguref19f figure 14. recommended led drive circuit figure 15. optocoupler input to output capacitance model for unshielded optocouplers *100 pf total capacitance 310? +5 v cmos 0.1f + - v cc = 15v c l * v out 9 2 8 3 7 4 shield 5 1 6 10 20k? 9 2 8 3 7 4 5 1 6 10 c ledp c ledn 9 2 8 3 7 4 5 1 6 10 20k? c ledp c ledn c led01 9 2 8 3 7 4 shield 5 1 6 10 20k? figure 16. optocoupler input to output capacitance model for shielded optocouplers figure 17. led drive circuit with resistor connected to led anode (not recommended) *100 pf total capacitance 310? +5 v cmos 0.1f + - v cc = 15v c l * v out 9 2 8 3 7 4 shield 5 1 6 10 20k? 9 2 8 3 7 4 5 1 6 10
12 figure 18. ac equivalent circuit for figure 17 during common mode transients figure 19. ac equivalent circuit for figure 14 during common mode transients v cm i total * 100 pf v out + - * the arrows indicate the direction of current flow during +dv cm /dt 300? i f i cledp c ledp c ledn c led01 9 2 8 3 7 4 shield 5 1 6 10 20k? 9 2 8 3 7 4 5 1 6 10 i c ledn * v cm 20k? v out + - * the arrows indicate the direction of current flow for +dv cm /dt transients. ** optional clamping diode for improved cmh performance. v r < v f (off) during +dv cm /dt. 300? + - c ledp c ledn c led01 9 2 8 3 7 4 shield 5 1 6 10 20k? * 2 3 4 5 1 100 pf v r ** isfthefacfequivalentfcircuitfforffiguref14fduringfcommonf modeftransients.finfthisfcase,fthefledfcurrentfisfnotf reducedfduringfaf+dv cm /dtftransientfbecausefthefcurrentf fowingfthroughfthefpackagefcapacitancefisfsuppliedfbyf thefpowerfsupply.fduringfaf-dv cm /dtftransient,fhowever,f thefledfcurrentfisfreducedfbyfthefamountfoffcurrentf fowingfthroughfc ledn .fbut,fbetterfcmrfperformancef isfachievedfsincefthefcurrentffowingfinfc ledo1 fduringfaf negativeftransientfactsftofkeepfthefoutputflow. cmr with the led of (cmr h ) afhighfcmrfledfdrivefcircuitfmustfkeepfthefledfoff(v f f fv f(off) )fduringfcommonfmodeftransients.fforfexample,f duringfaf+dv cm /dtftransientfinffiguref19,fthefcurrentf fowingfthroughfc ledn fisfsuppliedfbyfthefparallelfcombi - nationfoffthefledfandfseriesfresistor.fasflongfasfthefvoltagef developedfacrossfthefresistorfisflessfthanfv f(off) fthefledf willfremainfoffandfnofcommonfmodeffailurefwillfoccur.f evenfiffthefledfmomentarilyfturnsfon,fthef100fpffcapacitorf fromfpinsf8-7fwillfkeepfthefoutputffromfdippingfbelowfthef threshold.fthefrecommendedfledfdrivefcircuitf(figuref14)f providesfaboutf10fvfoffmarginfbetweenftheflowestfopto - couplerfoutputfvoltagefandfaf3fvfipmfthresholdfduringfaf 30fkv/ sftransientfwithfv cm f=f1500fv.fadditionalfmarginf canfbefobtainedfbyfaddingfafdiodefinfparallelfwithfthef resistor,fasfshownfbyfthefdashedflinefconnectionfinffiguref 19,ftofclampfthefvoltagefacrossfthefledfbelowfv f(off) . sincefthefopenfcollectorfdrivefcircuit,fshownfinffiguref20,f cannotfkeepfthefledfoffduringfaf+dv cm /dtftransient,fitfisf notfdesirablefforfapplicationsfrequiringfultrafhighfcmr h f performance.ffiguref21fisfthefacfequivalentfcircuitfforf figuref20fduringfcommonfmodeftransients.fessentiallyf allfthefcurrentffowingfthroughfc ledn fduringfaf+dv cm /dtf transientfmustfbefsuppliedfbyfthefled.fcmr h ffailuresfcanf occurfatfdv/dtfratesfwherefthefcurrentfthroughfthefledf andfc ledn fexceedsfthefinputfthreshold.ffiguref22fisfanf f alternativefdrivefcircuitfwhichfdoesfachievefultrafhighfcmrf performancefbyfshuntingfthefledfinfthefoffstate. figure 20. not recommended open collector led drive circuit figure 21. ac equivalent circuit for figure 20 during common mode transients figure 22. recommended led drive circuit for ultra high cmr +5 v q1 9 2 8 3 7 4 shield 5 1 6 10 20k? 100 pf i v cm + - q1 c ledn 9 2 8 3 7 4 shield 5 1 6 10 i 20k? v out 20k? c led01 c ledp c ledn * 300? * the arrows indicate the direction of current flow for +dv cm /dt transients. +5 v 9 2 8 3 7 4 shield 5 1 6 10 20k?
13 ipm dead time and propagation delay specifcations thefACNV4506fincludesfafpropagationfdelayfdiferencef specifcationfintendedftofhelpfdesignersfminimizefdeadf timefinftheirfpowerfinverterfdesigns.fdeadftimefisftheftimef periodfduringfwhichfbothfthefhighfandflowfsidefpowerf transistorsf(q1fandfq2finffiguref23)farefof.fanyfoverlapfinf q1fandfq2fconductionfwillfresultfinflargefcurrentsffowingf throughfthefpowerfdevicesfbetweenfthefhighfandflowf voltagefmotorfrails. tofminimizefdeadftimefthefdesignerfmustfconsiderfthef propagationfdelayfcharacteristicsfoffthefoptocouplerf asfwellfasfthefcharacteristicsfoffthefipmfigbtfgatefdrivef circuit.fconsideringfonlyfthefdelayfcharacteristicsfoffthef optocouplerf(thefcharacteristicsfoffthefipmfigbtfgatefdrivef circuitfcanfbefanalyzedfinfthefsamefway)fitfisfimportantf tofknowfthefminimumfandfmaximumfturnfonf(t phl )fandf turn-off(t plh )fpropagationfdelayfspecifcations,fpreferablyf overfthefdesiredfoperatingftemperaturefrange. theflimitingfcasefoffzerofdeadftimefoccursfwhenfthefinputf tofq1fturnsfoffatfthefsameftimefthatfthefinputftofq2fturnsf on.fthisfcasefdeterminesfthefminimumfdelayfbetweenf led1fturn-offandfled2fturn-on,fwhichfisfrelatedftofthef worstfcasefoptocouplerfpropagationfdelayfwaveforms,f asfshownfinffiguref24.fafminimumfdeadftimefoffzerofisf achievedfinffiguref24fwhenfthefsignalftofturnfonfled2fisf delayedfbyf(t plh fmaxf-ft phl fmin)ffromfthefled1fturnfof.f f notefthatfthefpropagationfdelaysfusedftofcalculatefpddf areftakenfatfequalftemperaturesfsincefthefoptocouplersf underfconsiderationfareftypicallyfmountedfinfclosef proximityftofeachfother.f(specifcally,fpreviousfequationf arefnotfthefsamefasftheft plh fmaxfandft phl fmin,foverfthef fullfoperatingftemperaturefrange,fspecifedfinfthefdataf sheet.)fthisfdelayfisfthefmaximumfvaluefforfthefpropaga - tionfdelayfdiferencefspecifcationfwhichfisfspecifedfatf 450fnsfforfthefACNV4506foverfanfoperatingftemperaturef rangefoff-40cftof105c. delayingfthefledfsignalfbyfthefmaximumfpropagationf delayfdiferencefensuresfthatfthefminimumfdeadftimefisf zero,fbutfitfdoesfnotftellfafdesignerfwhatfthefmaximumf deadftimefwillfbe.fthefmaximumfdeadftimefoccursfinf thefhighlyfunlikelyfcasefwherefonefoptocouplerfwithfthef fastestft plh fandfanotherfwithfthefslowestft phl farefinfthef samefinverterfleg.fthefmaximumfdeadftimefinfthisfcasef becomesfthefsumfoffthefspreadfinftheft plh fandft phl fpropa - gationfdelaysfasfshownfinffiguref25.fthefmaximumfdeadf timefisfalsofequivalentftofthefdiferencefbetweenfthef maximumfandfminimumfpropagationfdelayfdiferencef specifcations.fthefmaximumfdeadftimef(dueftofthefopto - couplers)fforfthefACNV4506faref600fnsf(=f450fnsf-f(-150fns))f overfanfoperatingftemperaturefrangefoff-40cftof105c. figure 23. typical application circuit 310? +5 v q1 q2 cmos i led1 310? +5 v cmos i led2 -hv ACNV4506 ACNV4506 ACNV4506 ACNV4506 ACNV4506 m ipm +hv 0.1f 0.1f v cc1 v out1 v cc2 v out2 9 2 8 3 7 4 shield 5 1 6 10 20k? 9 2 8 3 7 4 shield 5 1 6 10 20k? m m 9 2 8 3 7 4 5 1 6 10 9 2 8 3 7 4 5 1 6 10 9 2 8 3 7 4 5 1 6 10
for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies in the united states and other countries. data subject to change. copyright ? 2005-2011 avago technologies. all rights reserved. av02-2483en - august 31, 2011 v out1 v out2 i led2 t plh max. pdd* max. = (t plh -t phl ) max. = t plh max. - t phl min. t phl min. i led1 q1 on q2 off q1 off q2 on *pdd = propagation delay difference note: the propagation delays used to calculate pdd are taken at equal temperatures. v out1 v out2 i led2 t plh min. maximum dead time (due to optocoupler) = (t plh max. - t plh min. ) + (t phl max. - t phl min. ) = (t plh max. - t phl min. ) - (t plh min. - t phl max. ) = pdd* max. - pdd* min. t phl min. i led1 q1 on q2 off q1 off q2 on *pdd = propagation delay difference t plh max. t phl max. pdd* max. max. dead time note: the propagation delays used to calculate the maximum dead time are taken at equal temperatures. figure 24. minimum led skew for zero dead time figure 25. waveforms for deadtime calculation


▲Up To Search▲   

 
Price & Availability of ACNV4506

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X